Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples

نویسندگان

  • S. N. CHANDLER-WILDE
  • D. P. HEWETT
  • A. MOIOLA
چکیده

This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalizations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces H s() and H̃ s(), for s ∈ R and an open  ⊂ Rn . We exhibit examples in one and two dimensions of sets  for which these scales of Sobolev spaces are not interpolation scales. In the cases where they are interpolation scales (in particular, if  is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree

We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated \native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for fu...

متن کامل

IF Approximation of Fourier Transforms and Certain Interpolating Splines

We extend to iP, X g p < °°, the L2 results of Bramble and Hilbert on convergence of discrete Fourier transforms and on approximation using smooth splines. The main tools are the estimates of [ 1 ] for linear functionals on Sobolev spaces and elementary results on Fourier multipliers.

متن کامل

On the Role of Exponential Functions in Image Interpolation

A reproducing-kernel Hilbert space approach to image interpolation is introduced. In particular, the reproducing kernels of Sobolev spaces are shown to be exponential functions. These functions, in turn, give rise to alternative interpolation kernels that outperform presently available designs. Both theoretical and experimental results are presented.

متن کامل

Some Error Estimates for Periodic Interpolation on Full and Sparse Grids Curves and Surfaces with Applications in Cagd 355

We give a uniied approach to error estimates for periodic interpolation on full and sparse grids in certain Sobolev spaces. We imposèperiodic' Strang{Fix conditions on the underlying functions in order to obtain error bounds with explicit constants. x1. Introduction The approximation and interpolation of bivariate periodic functions have been studied for some time. While periodic interpolation ...

متن کامل

Stability of Multiscale Transformations

After brieey reviewing the interrelation between Riesz-bases, biorthogonality and a certain stability notion for multiscale basis transformations we establish a basic stability criterion for a general Hilbert space setting. An important tool in this context is a strengthened Cauchy inequality. It is based on direct and inverse estimates for a certain scale of spaces induced by the underlying mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014